

Multi-Anode Straw Tracker

Seog Oh

Duke University

Principle of straw tracker

- A simple device :
 - A tube with an anode wire at the center.
 - Anode wire is at positive potential while straw tube is at ground.
 - Anode wire is at ground while straw tube is at negative potential
 - For timing, detect the first electron cluster
 - Convert arrival time to distance (RT relation)
 - Operation inside a strong B field is no problem
 - Resolution ~120 microns (it is function of distance from the wire —worse near the wire)
 - dE/dx can be done

Detectors

- Radius of straw tubes varies from 2 mm (ATLAS TRT) to a couple of cm. The longest detector with 4 mm tube was 4 m long although 8 m long prototype was built.
 - Require wire support every ~75 cm (2 mm radius tube) for electrostatic stability

Detectors

- SDC: t: 33 μm, r: 2 mm, L: 4 m
- TRT: t: 37 μm, r: 2 mm, L:1.5 m
- Mu2e: t: 16 μm, r: 2.5 mm, L: 0.4-1.2m
- NA62: t: 36 μm, r: 5 mm, L: 2.1 m
- LHCb: t: 35 μm, r: 2.5 mm, L: 2.4 m

TRT

LHCb

6

Advantages

- Stable under extremely high rate
 - TRT: ~20MHz/50 cm
 - Wire-joint technology increases the rate by x2 by reading out a straw tube from both ends.

- Operation in vacuum Mu2e/NA62
- Broken wire and gas leak problem during operation can be isolated and controlled.
 - HV lines to straws have fuses (TRT/Mu2e)
- Cross talk is low

Limitation

- Material
 - one tube/hit
- Difficulty of stringing for long straws (wire support)
- Difficulty of supporting stereo straws (or modules) in a cylindrical geometry
 - A detector with stereo has not yet been constructed

Multi-anode Straw

Tracker (NIM A640 (2011) 160-163)

- Insert several anode wires inside a straw.
- There are two operational modes depending on the center wire potential.
 - HVcenter wire=HVanode HVcente rwire=HVstraw

- Stereo configuration
 - Rotate the wire plane at ends by some angle,
 (15 degrees in our prototype) in opposite

direction.

Prototype (30 cm long)

Detector components

Performance

Summary

- Straw tube detector is a mature technology and ideal for operation under extremely high rate
- With muti-anode concept, the straw tube material per hit can be reduce by ~3
 - ~0.6 mm kapton/mylar equivalent thickness for ~60 hits/track
 - A design and a prototype are presented
 - Need a cosmic ray test
 - to measure the resolution as a function of track angle
 - Check the stability and high rate capability
 - Verify stereo concept also need a MC simulation